Name: _	 				
Teacher/Class:					

SYDNEY TECHNICAL HIGH SCHOOL

HSC ASSESSMENT TASK 1

DECEMBER 2008

MATHEMATICS

Time Allowed: 70 minutes

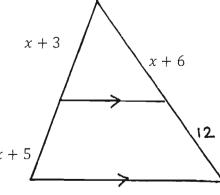
Instructions:

- Write your name and class at the top of each page.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Diagrams unless otherwise stated are not to scale.

Question	TOTAL							
1	2	3	4	5	6	7	8	
		_						
/6	/6	/6	/6	/7	/7	/6	/7	/51

QUESTION 1

(6 Marks)


MARKS

i) Sketch $y = x^2 - 4x - 5$ ii) Hence or otherwise solve $x^2 - 4x - 5 > 0$ a)

1

1

b)

Find 2 possible values for x(no reason required)

2

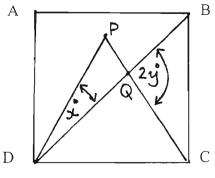
c)

Find k if the equation
$$x^2 - (k - 5)x + (k - 7) = 0$$
 has one root equal to -2 .

2

QUESTION 2

(Start a new page)


(6 marks)

Solve $x^4 - 5x^2 + 4 = 0$ a)

2

2

b)

ABCD is a square. PDC is an equilateral triangle. Find *x* and *y* (no reason required)

Find the centre and the radius of the circle $x^2 + y^2 + 8x - 2y - 8 = 0$ c)

2

QUESTION 3

(Start a new page)

(6 marks)

The first 3 terms of a sequence are 5, 9 and 13 i) Find the 46th term **a**)

1

Is 147 a term of the sequence? ii)

2

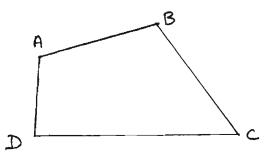
Use appropriate working to explain your answer

Evaluate b)

 $\stackrel{12}{\leq} (3k-1)$

2

Find k if the product of the roots of $x^2 - (k-4)x + 3k = 0$ is 18. **c**)


1

QUESTION 4

(Start a new page)

(6 marks)

ABCD is a quadrilateral in which the diagonal BD bisects the angles at B and D. a)

- Copy this quadrilateral onto your answer sheet and add the additional information. i)
- By completing an appropriate congruence proof explain why AB = BC and AD = DC. ii)

3

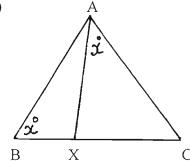
What type of quadrilateral is ABCD? iii)

b) Find the equation of the parabola with vertex (-2, 3), axis parallel to the y axis and passing through the point (-6, -5).

2

QUESTION 5

(Start a new page) (7 marks)


a) The third term of a geometric series is $\frac{3}{4}$ and the seventh term is 12. Find the first three terms.

3

3

1

b)

If
$$CAX = ABC = x^0$$

- i) Prove $\triangle CAX \parallel \triangle CBA$
- ii) Hence explain why $CA^2 = CX \cdot CB$

QUESTION 6

(Start a new page)

(7 marks)

- a) i) Find the first and last multiples of seven between 400 and 600.
 - ii) Hence find the sum of all the multiples of seven between 400 and 600.

2

- b) i) Find the equation of the directrix of the parabola $x^2 = -12y$
 - ii) Find the equation of the tangent at the point (-6, -3) on the parabola $x^2 = -12y$
 - iii) If this tangent meets the directrix at T, find the co-ordinates of T.

2

QUESTION 7

(Start a new page)

(6 marks)

MARKS

a) For what values of k will the quadratic equation $(k-2)x^2 - 2kx-1 = 0$ have real and different roots.

3

b) Find the sum of the powers of 2 from 1 to 1024 inclusive. (ie $2^0 + 2^1 + 2^2 \dots$)

3

QUESTION 8

(Start a new page)

(7 marks)

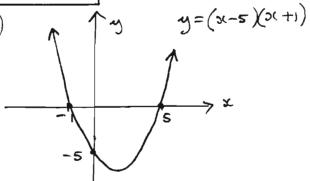
a) i) Express 0.34 as an infinite series by writing the first 4 terms.

1

ii) By using the sum to infinity formula of the above series write 0.34 as a fraction.

2

b) i) Let A and B be the fixed points (-1, 0) and (2, 0) and P be the variable point (x, y). If PA = 2PB find the locus of P(x, y).


3

ii) Name the geometric shape traced out by the locus of P(x, y).

1

Question 1

(i (a

$$x > 5$$
, $x < -1$

b)
$$\frac{x+3}{x+5} = \frac{x+6}{12}$$

 $12x+36 = x^2+11x+30$
 $0 = x^2 - x - 6$
 $(x-3)(x+2)=0$
 $x=3,-2$

c)
$$4 - (k-5)x-2 + (k-7)=0$$

 $4 + 2k - 10 + k-7=0$
 $3k - 13 = 0$
 $k = \frac{13}{3}$

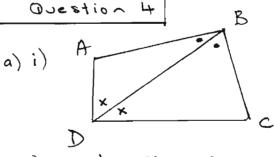
O-uestion 2

1) Let u= x2 .: u2-5m+4=0 (u-4)(u-1)=0 u=4, u=1 -'. u2=4 u2=1 ム= さ2 ム= 立1

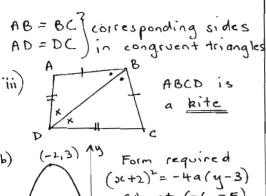
b)
$$45^{\circ}$$
 $2y + 45 + 30 = 180$
 $2y = 105$
 45° $2y = 52\frac{1}{2}$

$$\frac{x}{105} = 180$$

$$\frac{x = 15}{4}$$


 $x^2 + 8x + 16 + y^2 - 2y + 1 = 8 + 1$ $(x+4)^{2}+(y-1)^{2}=25$ Centre (-4) 1) Radius 5

Question 3


a) 5,9,13.... a=5 d=4 A.P. i) T46=5+ (46-1)x4 T46= 185

Tio b) T, T₂ T₃ 8, 11, 14... te=3 te=4 te=5 35 七=12 Sio = 10 (8+35) S 10 = 215

c)
$$\frac{c}{a} = 18$$
 $\frac{3k}{1} = 18$

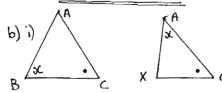
ii) In D'S ABD, CBD ABD = CBD (DB biseds ABC) ADB = CDB (" DB is common " A ABD = A CBD (AAS)

b)
$$(-2,3)^{4y}$$
 Form required
 $(3(+2)^{2} = -4a(y-3)$
Sub pt $(-6,-5)$
 $16 = -4a(-8)$
 $16 = 32a$
 $\frac{1}{2} = a$
 $(x+2)^{2} = -2(y-3)$

Ovestion 5

a)
$$T_3 = \frac{3}{4}$$
 $T_7 = 12$

$$ar^2 = \frac{3}{4} = 0$$
 $ar^6 = 12 = 0$


$$2 \div 0 \qquad ar^6 = \frac{12}{3/4}$$

$$r^4 = 16$$

$$r = \pm 2$$

$$r = 2 = 3/16$$

$$GP: \frac{3}{16}, \frac{3}{8}, \frac{3}{4} \dots$$

In D'S CAK, CBA ~ C is common CAX = ABC = x (given) .. DCAX III DCBA (equangular)

ii)
$$\frac{CA}{CX} = \frac{CB}{CA} \begin{pmatrix} \cos p & \text{sides} \\ \text{similal } \Delta's \end{pmatrix}$$

 $\frac{(CA)^{\frac{1}{2}} = CX.CB}{\frac{1}{2}}$

Ovestion 6

i) 466, , 595 ii) T= 406 d=7

$$595 = 406 + (n-1) \times 7$$
 $189 = 7n - 7$
 $n = 28$
 $T_{28} = 595 = 1$
 $T_{28} = 595 = 1$

$$S_{28} = \frac{28}{2} \left(406 + 595 \right)$$

$$S_{28} = 14014$$
b) i) $x^2 = -12y$

$$4q = 12$$

$$a = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

ii)
$$y = \frac{x^2}{-12}$$

$$\frac{dy}{dx} = \frac{2x}{-12} = \frac{x}{-6}$$

$$m = 1 \quad \text{at } (-6, -3)$$

eqn tang:
$$y+3=1(x+6)$$

 $0=x-y+3$
iii) $T(0,3)$

Question 7

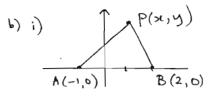
a) Real diff roots if A>O $\Delta = (-2k)^{L} - 4(k-2)x-1$

$$\Delta = 4h^{2} + 4h - 8$$

$$\therefore 4h^{1} + 4h - 8 > 0$$

$$h^{2} + k - 2 > 0$$

$$(k+2)(h-1) > 0$$



b)
$$2^{n}+2^{n}+2^{2}+\cdots 2^{n}$$
 $4^{n}+2^{n}+2^{2}+\cdots 2^{n}$
 $5^{n}=\frac{1(2^{n}-1)}{2-1}$
 $5^{n}=20+7$

Osestion 8

a) i) $\frac{3}{10} + \frac{4}{100} + \frac{4}{1000} + \frac{4}{10000}$ G.P 4=4 (=10

$$\begin{array}{c}
ii) \quad 0.34 = \frac{3}{10} + \frac{4/100}{1 - 1/10} \\
= \frac{3}{10} + \frac{2}{45} \\
= \frac{31}{90} \\
= \frac{31}{90}
\end{array}$$

PA = 2PB

$$\begin{cases} (3x+1)^{2} + (y-0)^{2} &= 2 \left[(3x-2)^{2} + (y-0)^{2} \right] \\ x^{2} + 2x + 1 + y^{2} = 4 \left(x^{2} - 4x + 4 + y^{2} \right) \\ x^{2} + 2x + 1 + y^{2} = 4x^{2} - 16x + 16 + 4y^{2} \\ 0 = 3x^{2} - 18x + 3y^{2} + 15 \\ 0 = x^{2} - 6x + y^{2} + 5 \end{cases}$$

ii) circle